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Abstract. We propose a novel one-dimensional simple model without disorder exhibiting slow dynamics
and aging at the zero temperature limit. This slow dynamics is due to entropic barriers. We exactly solve
the statics of the model. We derive an evolution equation for the slow modes of the dynamics which are
responsible for the aging. This equation is equivalent to a random walker on the energetic landscape.
This latter elementary model can be solved analytically up to some basic approximations and is shown to
present aging by itself, as well as a slow logarithmic relaxation of the energy: 〈e〉(t) ∼ 1/ ln(t) at large t.

PACS. 02.50.Ey Stochastic processes – 05.70.Ln Nonequilibrium thermodynamics, irreversible processes

1 Introduction

Below their glassy transition temperature, glassy systems
relax very slowly and remain out of equilibrium on exper-
imental time scales. Despite intensive theoretical studies,
the exact nature of this transition is not clearly under-
stood yet, even if it is widely believed that it is of dynam-
ical nature [1]. Glassy systems seem to be trapped in some
metastable states whose numbers and life times increase
dramatically with decreasing energy. Therefore there is
an increasing demand for paradigmatic toy-models con-
taining the elementary physical mechanisms responsible
for glassiness and its experimental manifestations, such
as the aging effect [2]. Among several other mechanisms
for slow relaxation and aging, the focus has recently been
brought into the existence of entropic barriers [3]. This
term designates boundaries between regions of the phase
space where the system has very rare possibility to find a
path to go from one region to the other. The system can be
trapped in such a region without the necessity of energetic
barriers. By analogy with Arrhenius law, the height ∆S of
an entropic barrier is defined by τ = exp(∆S), where τ is
the time the system needs to go through the entropic bar-
rier. Simple models [4] – such as the backgammon model
[5] or urn models [6] – have been developed which ex-
hibit such entropic barriers. These models are of mean-
field type such as most of models for glassy dynamics. As
compared to these simple models for glassiness and en-
tropic barriers, the interaction in the present toy-model is
one-dimensional and therefore it can be legitimately con-
sidered as more physical.
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On the other hand, our model is based on the well-
characterized permutation group Σn, and many calcula-
tions can be carried out either exactly or after some basic
assumptions.

2 The model

We consider a one-dimensional system of size n where the
configurations are the n! permutations on {1, . . . , n} of the
symmetric group Σn. We represent a configuration σ ∈ Σn

by a word σ = σ(1)σ(2) . . . σ(n) with σ(i) ∈ {1, . . . , n}.
The energy E of a configuration is defined by its number
of descents. One says there is a descent between i and i+1
if σ(i) > σ(i+1). For example, let n = 6, the permutation

σex = 15↓236↓4 (1)

has 2 descents symbolized by an arrow ↓ and its energy is
therefore E(σex) = 2.

We denote by Dk
n the degeneracy of the energy level

E = k. The Dk
n are known as Euler numbers [7]. The

identity is the unique ground state with zero energy so
that D0

n = 1. Furthermore we can define a symmetric
permutation σc for all σ ∈ Σn, by

σc = n + 1 − σ(i), (2)

for 1 ≤ i ≤ n, which has the energy E(σc) = n−1−E(σ).
The distribution of configurations with energy k is sym-
metric with respect to (n − 1)/2, and Dk

n = Dn−1−k
n .

At high temperatures all configurations have the same
probability, the mean energy per particle in this limit is
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〈e〉 = (n − 1)/2n, according to the above symmetry and
〈e〉 = 1/2 at the large size limit.

The system evolves via a Metropolis Monte-Carlo al-
gorithm [8] and we study two different dynamics: in the
non-local one, at each time step, any two sites i �= j are
chosen at random and we try to transpose the elements
σ(i), σ(j) with a certain probability Pji, which depends on
the temperature T and on the energy variation ∆E if the
transposition were executed: Pji = min(1, exp(−∆E/T )).
In the local dynamics we choose only one site i at random,
and we try to transpose σ(i) and σ(i + 1), with the same
transition probability as above. Sometimes in the following
we will call particles the σ(i). Indeed, this model can be
seen as a system of n distinguishable labelled particles on
a one-dimensional lattice which tend to sort themselves.

We anticipate on the following to emphasize the ori-
gin of the entropic barriers in the non-local dynamics.
If quenched from infinite to vanishing temperature the
system evacuates its energy and relaxes through decreas-
ing energy levels towards its equilibrium state. We shall
demonstrate in the following that it encounters entropic
barriers between any two successive energy levels whereas
it relaxes rapidly inside each energy level. For example let
us explain why there is an entropic barrier between the
first excited states and the unique fundamental one. We
need to know more precisely the values of Dk

n. Starting
from the expression [7]:

(k + 1)n =
k∑

j=0

Dk
n

(
n + k − j

n

)
, (3)

we derive the value of D1
n = 2n − (n + 1) � 2n for n � 1.

We get in the same way:

Dk
n � (k + 1)n, for k/n 	 1. (4)

We can easily recover the result for D1
n by constructing

the permutations with one descent as follows: we place
the elements of the permutation, beginning by 1 and con-
tinuing with 2 etc., randomly in two different sets, like
if we were distributing distinguishable particles into two
boxes. We can build 2n permutations that have a descent
at the boundary of the two sets, except if we have built
the identity, which is obtained in n + 1 ways, moving this
boundary between any two successive elements of the iden-
tity. Subsequently D1

n = 2n − (n + 1). This point of view
can be generalized to any energy k. The system is seen
as (k + 1) ordered subsets separated by descents. In this
point of view, the descents can be considered as domain
walls between ordered subsets.

This point of view also highlights the similitude be-
tween our model and the backgammon [5,9] one. It consists
in N distinguishable particles placed in N boxes, where
the energy is equal to minus the number of empty boxes.
Our subsets play the role of the boxes in the backgammon
model. The difference with our model is that the parti-
cle interaction in the backgammon model is not localized:
it is intrinsically mean-field. Note however that there ex-
ists a one-dimensional generalization of the backgammon
model [10] where particles are allowed to jump to nearest

neighbors only. However, this generalization complicates
the analysis of the model [10].

We have seen above that there are about 2n first ex-
cited states and only one fundamental. In order to find this
state, the system with energy equal to one, will wander in
the phase space until it finds a state connected to the
fundamental one. If the wandering is uniform in the first
level, the probability that the system finds such a state,
will be (n(n − 1)/2)/2n, where n(n − 1)/2 is the number
of path starting from the fundamental state in the non-
local dynamics. Being in one of these states, it will have
a probability 2/n(n − 1) to choose the direction towards
the minimal energy. So, there will be about 2n steps of
the dynamics before the system finds the identity state,
which corresponds to an entropic barrier of height of order
n. Note that the previous argument also holds in the local
dynamics: one obtains the same entropic barrier. Never-
theless, the type of the dynamics will be of importance,
since one can suppose an uniform wandering only for the
non-local one for which we can prove the connectivity of
the energy levels even at T = 0. Which means that there
is always a path between any two configurations of one
level that is inside it. The system searching the paths to
decrease its energy will not have to pass through any en-
ergy barrier. It is not the case for the local dynamics. But
the entropic barriers, which depend mainly on the ratio of
the level sizes, will be also present in the local dynamics,
in conjunction with energetic barriers. In terms of permu-
tation, passing through an entropic barrier corresponds to
a complex rearrangement of particle. The order in which
pairs of particles must be swapped to optimize their posi-
tion without increasing the energy is quite constrained.

3 Statics

One of the advantages of the model is that its partition
functions, canonical or grand canonical, have been exten-
sively studied in the mathematical literature. Indeed, we
can write the canonical partition function as follows:

Z =
n−1∑
k=0

Dk
n exp

(
− k

T

)
=

n−1∑
k=0

Dk
ntk =

1
t
(1−t)n+1

∑
k≥0

kntk,

(5)
with t = exp(−1/T ) and where the last equality comes
from combinatorial analysis [11]. More precisely, it is ob-
tained inductively using the following relation on the Dk

n:

Dk
n+1 = (n + 1 − k)Dk−1

n + (k + 1)Dk
n. (6)

This former equation is obtained by building configura-
tions with n+1 elements by adding the (n+1)th particle
in all the possible positions on a configuration with n el-
ements. One can further remark that equation (4) comes
from the second term of the right hand-side of equation
(6). To obtain the mean values of the thermodynamical
observables we compute:

ln Z

n
=

n + 1
n

ln(1 − t) +
1
n

ln
∑
k≥0

kntk−1. (7)



V. Desoutter and N. Destainville: Slow dynamics in the one-dimensional ‘descent model’ 385

The sum in the right hand side of the former equation
reads

∑
k≥0

kntk−1 =
∑
k≥0

exp−n(ln(k + 1) − k

nT
) (8)

=
∑
k≥0

exp(−nf(k, T ))

= (2πnT 2)1/2 exp(1/T − n),

by taking the continuous limit, and evaluating the so-
obtained integral by a saddle-point argument for n � 1.
This continuous limit is only valid if the width of the
Gaussian approximate of exp (−nf(k, T )), is large as com-
pared to the spacing between two consecutive energy lev-
els, ∆k = 1, that is to say if T � 1/2

√
n. In the thermo-

dynamic limit it will be always true for any finite temper-
ature. Using equation (7) and thermostatics identities the
thermodynamical observables can be exactly computed.
The free energy per site obeys

f = −T (ln(1 − t) + ln(nT )) (9)

and the mean energy per particle is given by

〈e〉 = T − t/(1 − t). (10)

It follows that the specific heat is

CV = 1 + t/(T (1 − t))2, (11)

and the entropy per particle is given by

s = (〈e〉−f)/T = ln(nT )+ln(1−t)−t/T (1−t)+1. (12)

Note that this entropy is not extensive. Let us remark the
existence of an interesting low temperature domain de-
fined typically by T < 0.1, where the first term of equation
(7) is negligible so that 〈e〉 � T . It delimits a low energy
domain, where Dk

n � (k + 1)n, which results in entropic
barriers. We will see in the following part that the slow
dynamics takes place in this region of the configuration
space. These results show that there is no thermodynam-
ical transition at any finite temperature.

4 Dynamics

We have defined two types of dynamics above, for the
sake of simplicity, we focus on the non-local one, and we
shall discuss the local one in the conclusion. As we have
seen above, we study the dynamics of the system after a
quench from high temperature, during which the system
tries to decrease its energy to reach a low temperature
equilibrium state. In the following, we will focus only on
low temperatures such that the system has to encounter
entropic barriers during its relaxation process.

In order to analyse the dynamics, we first map our
model on a random walker on the energy levels. It is on
this model, which is much simpler, that we get analytical

results. In a second part, we check numerically by Monte-
Carlo simulations that the dynamics of the descent model
is quite well described by this random walker. In order
to justify this mapping let us make some hypotheses. We
suppose that the equilibration time in any energy level is
short as compared to the time spent to go through an en-
tropic barrier between two energy levels. That is to say we
suppose that there is no entropic barrier inside an energy
level. This hypothesis is reasonable since the energy levels
are connected, and will be corroborated in the following
by numerical results. We also suppose that the paths be-
tween two energy levels are uniformly distributed inside
these levels.

Following these hypotheses we compute the probabil-
ity that the system goes from one level to another using
the mean features of the levels. We take the slow dynam-
ics of the model as equivalent to a dynamics between the
energy levels. In other words, we map the dynamics of
our model on a Markovian random walker on the energy
levels, whose features are precised in the following. Since
we know the Dk

n at low energy, and the number of paths
starting from any configuration, we know the total num-
ber of paths starting from one level, Dk

n(n−1)n/2. We are
searching the number of paths allowing the system to de-
crease its energy from one level k. It is also the number of
paths starting from one level l < k and arriving in k. Since
the energy variation cannot exceed 2, l ∈ {k−2, k−1}. Let
us introduce a parameter p(k) which represents the pro-
portion of paths starting from the level k−1 and allowing
the system to increase its energy by one unit. It certainly
depends on the energy level. We investigated numerically
the configuration space of the model, and we concluded
that for k

n = e < 0.1, p(k) � Ke, with K a constant that
seems to depend very weakly on n. For n = 10000, we
have K � 1.99 and K = 1.97 for n = 12. For the links
between the fundamental state and the first excited ones
(k = 1), one can trivially show that K exactly equals 2.
In the following we will consider K = 2.

So, pDk−1
n (n − 1)n/2 is the number of paths starting

from one level k−1 and increasing the energy by one unit,
and pDk−1

n /Dk
n the proportion of paths starting from one

level k allowing the system to decrease its energy by one
unit. Being equilibrated in the level k, the system has to
find one of these paths to decrease its energy. These events
are very rare because of the great ratio Dk

n/Dk−1
n at low

energy. Indeed, the typical time τk,1, in Monte-Carlo steps,
to go through the entropic barrier (of height ∆S) between
the energy levels k and k − 1, satisfies:

τk,1 = exp(∆S) =
Dk

n

pDk−1
n

� 1
p

(
k + 1

k

)n
n�1=

1
p

exp(n/k).

(13)
This time gives us the probability rate by unit step that
the random walker goes from k to k−1, ωk→k−1 = 1/τk,1.
In the same way we can obtain the typical time τk,2 �
exp(2/(k/n− 1/n))/q that the system goes from a level k
to k − 2, q being the proportion of paths starting from k
and arriving in k+2. Simulations show that q is of order 1.
We obtain ωk→k−2 = 1/τk,2, but in the following we will
always neglect it since ωk→k−2/ωk→k−1 � ωk→k−1 	 1.
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The master equation for the random walker at T = 0 is
given by:

P (k, t + 1/n) = P (k, t)
+ p(k + 1) exp(−n/(k + 1))P (k + 1, t)

− p(k) exp(−n/k)P (k, t), (14)

where t is in Monte-Carlo unit (one unit is equal to n
Monte-Carlo steps). By using the energy per particle e
and the continuous limit in time and energy, this equation
reads:

∂P (e, t)
∂t

=
∂

∂e
(p(e)P (e, t) exp(−1/e)). (15)

Thus one obtains the evolution of the mean energy per
particle with time 〈e〉(t), using p(e) = 2e:

d〈e〉
dt

=
∫ (n−1)/n

0

∂P (e, t)
∂t

e de

= −2
∫ (n−1)/n

0

eP (e, t) exp(−1/e)de. (16)

We calculate this integral by developing
eP (e, t) exp(−1/e) around 〈e〉:

d〈e〉
dt

= −2〈e〉 exp(−1/〈e〉) + O(∆e2 exp(−1/〈e〉)/〈e〉3),
(17)

where one keeps only the zeroth order in e − 〈e〉, since
we shall demonstrate that ∆e2 = 〈(e − 〈e〉)2〉 � 〈e〉2/2n.
Indeed we can derive time evolution of ∆e2 from equa-
tion (14) paying attention to keep terms of order 1/n
since they cannot be neglected in this case. As above, dis-
crete sums are evaluated using an integral and developing
eP (e, t) exp(−1/e) around 〈e〉:

d∆e2

dt
= − 2

〈e〉e
−1/〈e〉∆e2 +

〈e〉
n

e−1/〈e〉 − 1
n

e−2/〈e〉. (18)

The first term describes a rapid decay of ∆e2 towards
its quasi-equilibrium value 〈e〉2/2n. Hence ∆e2 will be
stabilized around 〈e〉2/2n, which is checked numerically
for the descent model and the random walker. By in-
tegrating equation (17) we obtain the time the walker
needs to go from high energy to the level ε = 〈e〉, t =
ε exp(1/ε)/2 + O(ε2 exp(1/ε)) and:

〈e〉(t) � 1
ln(2t) + ln(ln(2t))

t→∞∼ 1
ln(t)

. (19)

This dynamics can also be found in a variety of theoret-
ical models [4], such as the backgammon model and the
oscillator model [12], as well as in compaction of granular
media (models and experiments [13–15]; see conclusion).
This result means that the system will never reach the
fundamental state at T = 0, and will always stay out of
equilibrium despite the absence of energy barriers. Its re-
laxation time in the thermodynamical limit is diverging.
In the long time regime the dynamics will be slower and

slower. To check equation (19), we made some numeri-
cal simulations on the random walker and on the original
model. The interest of the random walker is that its sim-
plicity allows us to compute numerically its exact dynam-
ics for large n and t (up to t = 1012) using its transition
matrix. We find very good agreement between analytical
and numerical calculations. Monte-Carlo simulations on
the descent model are also in very good agreement with
analytical calculations at large t, as we can see in Fig-
ure 2. These results corroborate a posteriori the hypoth-
esis that there are no entropic barriers inside the energy
levels, since otherwise the random walker would be faster
than the descent model.

Let us remark that the only analytically unknown pa-
rameter is p(e). In fact, this parameter is irrelevant for
the asymptotic dynamics while p is of polynomial type:
p = Keα. Indeed, using this equation for p, equation (17)
reads:

d〈e〉
dt

= −K〈e〉α exp(−1/〈e〉)+O(∆e2 exp(−1/〈e〉)〈e〉α−4),

(20)
and hence the mean energy per particle becomes:

〈e〉(t) � 1
ln(Kt) + (2 − α) ln(ln(Kt))

t→∞∼ 1
ln(t)

. (21)

For α = 2, the evolution in 1/ ln(t) is even exact at all
times in the thermodynamical limit, not only asymptoti-
cally, which is well verified in numerical simulations.

The variance ∆e2 does not depend on α, since equation
(18) becomes:

d∆e2

dt
= −2〈e〉α−2e−1/〈e〉∆e2 +

〈e〉α
n

e−1/〈e〉. (22)

We still have the quasi-equilibrium value ∆e2 = 〈e〉2/2n.
We will see below that the shape of p does not change
the aging in the energy-energy correlation function either.
It is not surprising: what dominates the dynamics is the
exponential decay of the random walker transition rate
with the inverse energy.

In the following we will consider again p = 2e, since it
mimics the best the descent model.

To study the dynamics at T > 0, we have to consider
the possibility that the walker increases its energy. From
the definitions of the dynamics and of p and q, it follows
that ωk→k+1 = p exp(−β) and ωk→k+2 = q exp(−2β),
where β is the inverse temperature. At low temperature,
ωk→k+1/ωk→k+2 	 1, so we need not consider the pos-
sibility that the system jumps two levels in one step. In
the same way as at T = 0, the evolution of the random
walker position follows a master equation, which in the
continuous limit, leads to:

d〈e〉
dt

= −2〈e〉 exp(− 1
〈e〉 ) + 2〈e〉 exp(−β)

+ O(∆e2 exp(−1/〈e〉)/〈e〉4). (23)

We remark that d〈e〉/dt = 0 for 〈e〉 = 1/β = T ,
which is the equilibrium energy for the descent model for
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Fig. 1. Schematic picture of the aging analysis. The full line represents the mean energy per particle whereas the dashed line
represents the mean energy per particle when the system is at energy e∗ at time tw. δt is the constant time shift between these
two curves.

T 	 1. At high T the random walker does not represent
the descent model anymore since it evolves in a region
where Dk

n �= (k + 1)n. Thus we focus on the low T region.
One can see from equation (23), that while the system
is far from its equilibrium energy the possibility that it
jumps to an higher level by thermal activation will be
negligible in front of its possibility to decrease its energy:
for 〈e〉 � 1/β we have exp(− 1

〈e〉 ) � exp(−β). Far from its
equilibrium state, the system is not influenced by the tem-
perature and its dynamics is the same as at T = 0. This
defines a typical time τβ = exp(β)/(2β) needed by the sys-
tem to reach 〈e〉 = 1/β with the dynamics at T = 0. Near
equilibrium, temperature effects appear and we obtain the
dynamics by developing exp(−1/〈e〉) around 1/β in equa-
tion (23). We find an exponential relaxation of energy with
the same characteristic time τβ (see Fig. 2, inset).

We define two types of correlation functions in order to
characterize the dynamics. One is based on the matching
of two permutations, in others words on the proportion
of sites at time t which bear the same particles as at a
time tw: Cσ(t, tw) =

∑n
1 δσi(t+tw),σi(tw)/n, where tw is

the waiting time after the quench. At high temperature,
it can be proven that Cσ(t � tw, tw) = 1/n, at lower
temperature we numerically observe that it is also the
case. This correlation function shows rapid decay for any
tw, with no aging effects. The second correlation function
we consider is the energy-energy correlation:

Ce(t, tw) =
〈e(t + tw)e(tw)〉 − 〈e(t + tw)〉〈e(tw)〉

∆e2(tw)
. (24)

We studied it numerically for both models at different tw.
For the random walker, at T = 0 one can see in Figure 3
that the system ages. The correlation function seems to

0 20 40 60 80 100β
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<
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0 2e+04 4e+04 6e+04 8e+04 1e+05
t

0

0.1

0.2

0.3

<
e>

12

Fig. 2. 〈e〉(t) for n = 500 and T = 0. Circles represent Monte-
Carlo simulations of the descent model compared with the
evolution given by 1/(ln(Kt) + ln(ln(Kt))) (full line) which
represents the energy of the random walker with p = Ke,
K = 2. Circles in the inset show 〈e〉 for the descent model
at a fixed time t = 104 = τ(β=12) for various temperatures
and the full line the exact static energy. We check that for
β such that τβ < 104 the system has reached its equilibrium
energy, and that for all β such that τβ > 104 the system is
out-of-equilibrium and its energy is independent of β.

tend towards the scaling law: Ce(t, tw) � tw/(t + tw) at
very large tw.

At T > 0 we expect the dynamics to be the same as
at T = 0 while the system is out-of-equilibrium. As long
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Fig. 3. Energy-energy correlation of the random walker at
T = 0, for n = 2000, as a function of (t+tw)/tw, compared with
tw/(t + tw) (full line). The inset shows the relaxation time as
a function of β, of the random walker, obtained from Ce(t, tw)
at equilibrium, and the full line a fit by A exp(β)/2β = Aτβ,
with A = 1.25, corroborating analytical calculations.

as t < τβ we find numerically the same plots as at T = 0
whereas we find time translational invariance for t + tw >
τβ . The same results are found for the descent model but
with statistical noise since we cannot use the transition
matrix. These results show the strong importance of the
observable we focus on to observe aging [17].

Now we propose a simple argument leading to the fol-
lowing law at large t and tw :

Ce(t, tw) � tw
t + tw

ln2 tw

ln2(t + tw)
. (25)

As illustrated in Figure 4, this law accounts quite well for
our numerical observations as far as the random walker is
concerned. In particular, the logarithmic corrections en-
sure the collapse of the curves for different values of tw on
a straight line of slope very close to −1. For the descent
model, the statistical noise does not allow to distinguish
if the logarithmic corrections improve the agreement be-
tween theory and numerical experiments.

Our argument is as follows: since the dynamics on en-
ergy levels is Markovian, the future of the random walker
beyond tw (i.e. t > 0) only depends on the energy distri-
bution at time tw. For the descent model it will be only
true at large times, when the entropic barriers make the
dynamics on the energy levels Markovian.

Now we make the following hypothesis: the evolution of
the mean energy 〈e〉(t+ tw) only depends on the mean en-
ergy 〈e〉(tw) and not on the precise shape and width of the
energy distribution at tw. This hypothesis is supported by
numerical simulations with different initial energy distri-
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Fig. 4. Energy-energy correlation corrected by ln2(t +
tw)/ ln2(tw) of the random walker at T = 0, for n = 2000,
as a function of (t + tw)/tw, compared with tw/(t + tw) (full
line). The logarithmic corrections ensure the collapse of the
data for different values of tw.

butions and it is corroborated by the excellent agreement
between theoretical and numerical correlation functions.
Furthermore, it amounts to neglecting the terms of higher
order in equation (17), as we made before, which is exact
in the thermodynamics limit.

A consequence of this hypothesis is that any shift δe
at tw of the mean energy has the same effect on 〈e〉(t+tw)
as a time delay δt at tw, since it only consists of a shift of
the initial condition. For small δe, δt is such that:

δe

δt
� d〈e〉

dt
(tw) = − 1

tw ln2 tw
. (26)

This point is illustrated in Figure 1. Now we still denote
by 〈e〉(t + tw) the mean energy without any shift at tw,
and by 〈e|δe, tw〉(t + tw) the mean energy after an energy
shift δe at tw (conditional mean). Subsequently

〈e|δe, tw〉(t + tw) � 〈e〉(t + tw + δt) (27)

� 〈e〉(t + tw) + δt
d〈e〉
dt

(t + tw)

� 〈e〉(t + tw) + δe
tw

t + tw

ln2 tw

ln2(t + tw)
.

Now the energy-energy correlation function is

〈e(t+ tw)e(tw)〉 =
∑
e∗

∑
e

e e∗ P (e∗, tw)P (e, t+ tw|e∗, tw)

(28)
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where P (e∗, tw) is the probability that the energy per par-
ticle is e∗ at time tw and P (e, t+tw|e∗, tw) is a conditional
probability, and

〈e(t + tw)e(tw)〉 (29)

=
∑
e∗

e∗P (e∗, tw)〈e|δe = e∗ − 〈e〉(tw), tw〉

=
∑
e∗

e∗P (e∗, tw)

×
[
〈e〉(t + tw) + (e∗ − 〈e〉(tw))

tw
t + tw

ln2 tw

ln2(t + tw)

]

= 〈e〉(t + tw)〈e〉(tw)

+
tw

t + tw

ln2 tw

ln2(t + tw)

∑
e∗

P (e∗, tw) [e∗ − 〈e〉(tw)]2 .

The last sum is the variance ∆e2 of the energy distribu-
tion at time tw. Hence we get equation (25). Note that
the same kind of argument can be used to derive the same
energy-energy correlation function for the Backgammon
model and is also in excellent agreement with numerical
simulations that we performed independently. Note that
our correlation function is not the same as the one calcu-
lated in reference [16], which explains that is does not have
the same expression. With p = Keα, this law is unchanged
as we saw before for 〈e〉(t).

5 Conclusion

We have focused so far on the non-local dynamics. Let
us now discuss briefly the local one. Its interest lies in
the fact that it is truly one-dimensional since it respects
the one-dimensional character of the model. We shall see
that even if its analysis is complicated by the existence of
energetic barriers (which freeze the dynamics at T = 0),
the qualitative conclusions are the same as for the non-
local case. Indeed, one shows numerically that below an
energy per particle em(n) ≈ 0.1, which depends slowly on
n, nearly all states are local potential minima. Therefore
at T = 0, the system is always stuck in these minima,
and at T > 0 it has to pass over energy barriers at each
energy level in order to lower its energy. However, these
energy barriers are always of height 1, and one needs a
time of order exp(β) to pass them. Therefore, the times
needed to pass over energetic barriers and entropic bar-
riers have the same order of magnitude and the system
is not substantially slowed by energetic barriers, at least
at T > 0. More precisely, we have measured typical times
τ ′(n, T ) by evaluating the constant diffusion of particles
at equilibrium, at small but finite temperatures and we
conclude that τ ′(n, T ) is of dominant order n2 exp(β). As
compared to the non-local characteristic times, this dy-
namics is n2 times slower than the non-local one. Note
that this prefactor n2 is also present at high temperatures
where it can be proven rigorously that τ ′(n,∞) ∼ n2 [18].
At high temperature, the n2 term is certainly due to the
diffusion of particles over the whole system. At smaller

temperature, one can think that it results from the diffu-
sion of descents acting as walls between ordered domains,
which allows the system to explore energy levels. As far
as aging is concerned, our numericals results remain com-
patible with the law: Ce(t, tw) = tw/(t + tw).

A natural continuation of the present work will be to
investigate into deeper detail the relationship between our
model and compaction of granular media. Indeed, equa-
tion (17) also governs the evolution of the density in sim-
ple models of compaction (see [14] for example). On the
other hand, in these mean-field models based on a free
volume argument, as well as in the one-dimensional de-
scent model, the slow dynamics is due to the necessity of
complex and long rearrangements of particles to optimize
the organization of the system.

To finish with, we mention that as soon as a model
presents an effective Markovian dynamics between energy
levels due to entropic barriers, the present analysis can
be applied to this model. For example, the Backgammon
model can be tackled in such a way and one obtains the
correct laws for the mean energy 〈e〉(t) and the correlation
function Ce(t, tw).

We thank Rémy Mosseri and Alexandre Lefèvre for fruitful
discussions.
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